

Quantifying the mitigation potential of SLCFs and potential co-benefits for regional air quality

Key Requirements of ESMs

Fiona O'Connor Met Office Hadley Centre







#### Outline of Presentation

What are Short-Lived Climate Forcers (SLCFs)

Why are they important?

Historical Perspective: Emission changes

Impact of emission changes on concentrations/AQ How well do ESMs reproduce historical changes?

How well do ESMs represent climate forcing/response?

Conclusions: Key Analysis and/or Requirements of future ESMs



#### What are SLCFs?



- Gases & aerosols emitted or formed in the atmosphere
- Lifetimes shorter than CO<sub>2</sub> (100 yrs)
- Forcers: Impact on the Earth's radiation budget
- Include greenhouse gases (e.g. methane), secondary pollutants (e.g. ozone), and aerosols (e.g. black carbon)



 Subset also referred to as Short-Lived Climate **Pollutants** (SLCPs) because of their impact on AQ (e.g. ozone, black carbon)









## Why are SLCFs important?





From: Climate and Clean Air Coalition www.ccacoalition.org/science



Von Schneidemesser & Monks (2013); Adapted from Williams (2012)



# SLCF Mitigation in Action: Surface O<sub>3</sub>



CONCENTRATIONS



"Strong" levels of air quality control measures and climate/methane mitigation: Collins et al., GMD (2017) simulations courtesy of G. Folberth



# SLCF Mitigation in Action: AOD and Climate Response







"Strong" levels of air quality control measures and climate/methane mitigation: Collins et al., GMD (2017)

New AerChemMIP simulations courtesy of G. Folberth



#### Role of ESMs



#### Two Key Questions:

- 1. How well do ESMs represent all the steps in the chain from emissions through to burden through to climate forcing and climate response?
- 2. How well do ESMs represent regional responses in surface air quality to emission changes?



Myhre et al., IPCC AR5 (2013)



## Historical emissions & methane







Hoesly et al., GMD (2018)

Folberth et al., Submitted (2020)

© Crown Copyright 2020, Met Office



### Methane Lifetime





| Model  | PI Lifetime | PD Lifetime |
|--------|-------------|-------------|
| CESM2  | 9.49 ±0.06  | 8.19 ±0.06  |
| UKESM1 | 8.95 ±0.07  | 8.08 ±0.06  |
| GFDL   | 9.86 ±0.07  | 8.60 ±0.07  |

Stevenson et al., ACPD (2019)



## Methane Forcing









O'Connor et al., Submitted.



# Historical emissions & Surface O<sub>3</sub>









Historical Evolution from HTAP O<sub>3</sub>
Parametric Model and UKESM1

Turnock et al., Atmos. Environ. (2018)

CONCENTRATIONS



# Historical emissions & Surface O<sub>3</sub>







Models capture only half the long-term trend

Young et al., Elementa (2018)

Europe

Measurement (cubic polynomial) Model (cubic polynomial) Model (4th order polynomial)

(a) Summer

(b) Winter

80

Normalized ozone (as % of 2000 intercept)

1930 1940 1950 1960 1970 1980 1990 2000 2010

Hoesly et al., GMD (2018)



# Diurnal Cycle in Surface O<sub>3</sub>





Liu et al., to be submitted (2020)





# Radiative Forcing by O<sub>3</sub>







Skeie et al., npj Clim Atmos Sci., Accepted (2020)



### Historical emissions & AQ











e) PM2.5 Standard deviation in JA



f) Surface PM2.5 Bias from Multi-model Mean in JIA

Turnock et al., ACPD (2019)



#### Historical emissions & AQ









Negative model bias

· Model capturing trend

Mulcahy et al., GMDD (2019)



## **Aerosol Forcing**





Smith et al., ACPD (2019)



Aerosol ERF dominated by SO<sub>2</sub>

Thornhill et al., ACPD (2019)



# UKESM1 Aerosol Forcing & Climate Response







#### b) Aerosol ERF by process



O'Connor et al., ACPD (2019)



 $PD - PI \Delta T$ 



-2.5 -2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 2.0 2.5

No Aerosol minus
With Aerosol



# Next Steps/Key Requirements (1)



#### Methane:

- Emissions-driven capability
- Analysis of drivers of methane/OH and methane lifetime
- Improved understanding of ERF estimates from ESMs

#### Ozone:

- Investigate biases in historical evolution of O3
- Model sensitivities role for composition-equivalents to 1ptCO2 and 4xCO2?
- Statistical Approaches to explore model uncertainties/sensitivities
- Improved diurnal cycle & coupling with biosphere
- Improved understanding of role of resolution
- Chemistry mechanism intercomparison
- Evaluation of nitrogen species/budget & coupling with biosphere



# Next Steps/Key Requirements (2)



#### **Aerosols:**

- Statistical Approaches to explore model uncertainties
- Inclusion of nitrate aerosol: Aerosol and NOx ERF
- Improved understanding of rapid adjustments in aerosol forcing
- Role of resolution and scale effects in aerosol forcing
- Inclusion of indirect forcings e.g. aerosol effects on vegetation & carbon uptake





# Thank you for listening!



## Extra Slides





#### Surface O3 Evaluation











Turnock et al., ACPD (2019)



### Surface O3 Evaluation





Turnock et al., ACPD (2019)



### Surface PM2.5 Evaluation





Turnock et al., ACPD (2019)



# BC vs OC Forcing









